加入收藏 | 设为首页 | 会员中心 | 我要投稿 开发网_开封站长网 (http://www.0378zz.com/)- 科技、AI行业应用、媒体智能、低代码、办公协同!
当前位置: 首页 > 站长资讯 > 传媒 > 正文

想要了解图或图神经网络?

发布时间:2021-04-28 12:01:32 所属栏目:传媒 来源:互联网
导读:不同时期的图建模 其实,我们可以将图建模分为图神经网络与传统的图模型。其中以前的图建模主要借助 Graph Embedding 为不同的节点学习低维向量表征,这借鉴了 NLP 中词嵌入的思想。而图神经网络借助深度学习进行更强大的图运算与图表征。 Graph Embedding

不同时期的图建模

其实,我们可以将图建模分为图神经网络与传统的图模型。其中以前的图建模主要借助 Graph Embedding 为不同的节点学习低维向量表征,这借鉴了 NLP 中词嵌入的思想。而图神经网络借助深度学习进行更强大的图运算与图表征。

Graph Embedding 算法聚焦在如何对网络节点进行低维向量表示,相似的节点在表征空间中更加接近。相比之下,GNN 最大的优势在于它不只可以对一个节点进行语义表示。

例如 GNN 可以表示子图的语义信息,将网络中一小部分节点构成的语义表示出来,这是以前 Graph Embedding 不容易做到的。GNN 还可以在整个图网络上进行信息传播、聚合等建模,也就是说它可以把图网络当成一个整体进行建模。此外,GNN 对单个节点的表示也可以做得更好,因为它可以更好地建模周围节点丰富信息。

在传统图建模中,随机游走、最短路径等图方法会利用符号知识,但这些方法并没有办法很好地利用每个节点的语义信息。而深度学习技术更擅长处理非结构文本、图像等数据。简言之,我们可以将 GNN 看做将深度学习技术应用到符号表示的图数据上,或者说是从非结构化数据扩展到了结构化数据。GNN 能够充分融合符号表示和低维向量表示,发挥两者优势。

图建模论文与代码

在 GitHub 的一项开源工作中,开发者收集了图建模相关的论文与实现,并且从经典的 Graph Embedding、Graph Kernel 到图神经网络都有涉及。它们在图嵌入、图分类、图表征等领域都是非常重要的论文。

(编辑:开发网_开封站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读