用户研究基础流程和 SPSS 快速数据处理
副标题[/!--empirenews.page--]
本公众号为阿里巴巴集团 CCOUX 所属,我们会定期为您推送一些用户体验相关的原创以及一些国外文章的翻译,希望您会喜欢并关注我们。请点击上方「37点2度体验」关注我们吧! 尽管基于在线行为监测的业务数据分析越来越被企业重视,在用户研究领域,问卷调查仍是量化评估用户体验的主要手段。一个典型的用户研究项目,通常会包含以下六个环节: 一、需求沟通:与客户/业务方/以及自己,确认清楚研究要解决的问题和实现的价值 二、问卷部署:关键环节。前期设计很大程度上决定了后期产出的质量。澄清三个问题:
三、调查执行:从样本回收正式启动到结束。在线消息/邮件一次性推送的项目,通常周期 5-7 天,前三天会回收到 80% 以上的样本量。 四、数据处理:本文重点,稍后细说。 五、报告撰写:基于问卷调查的结果,结合研究者分析,撰写研究报告。就问卷调查项目而言,研究报告本质上是数据可视化和观点提炼的过程。 六、问题推进:报告汇报从来都不是项目的终点。对于市场研究公司从业者,后续还要关注客户付款(囧~)。作为企业方用研,推动并解决问题是最终目的,而这个过程往往比催客户付款更加坑爹。 ? 聚焦到数据处理环节。首先,我们为什么要学习数据处理? 在分工高度专业化的研究公司,会有专职的 DP(Data Processor),而在企业方做用户研究多数情况下得靠自己。所以作为行业一线从业者,掌握数据处理的基本技能是有必要的;同时,清楚数据处理的过程本身,也能加深我们对数据结果的理解。 广义的数据处理,可以从很多角度进行解释,这里不作讨论。本文仅针对市场研究/用户研究领域最常见的数据处理需求,即对调研结果做出描述性统计,包含三个节点: 一、输入:问卷系统后台原始记录的一条条编码信息(Raw Data) 二、处理:统计工具 三、输出:可分析的直观统计数据(Data Table) 显然,描述性统计处理是简单的,Excel 透视表就可以完成,之所以仍要使用专业统计软件,处理的效率才是关键。数据处理的效率包括几个方面: 一、完成全部统计结果的速度 二、统计结果便于阅读和理解 三、统计结果更新的灵活性(如增减样本、多维度交叉等) 以上三个方面,决定了统计软件比 Excel 更加高效。那么使用什么统计软件呢?最推荐的还是 SPSS,原因是: 一、点点点操作,容易上手 二、编程规则简单,且可以将操作直接记录为脚本 三、功能全面,满足大多数需求 四、普及率最高,破解版你懂的 SPSS(Statistical Product and Service Solutions),全称统计产品与服务解决方案,国内通常按字母直读S-P-S-S,也有念S-PA-S或S-BA-S。简单介绍下 SPSS 的历史:
针对 SPSS 产品基础介绍的信息网上很多,这里只介绍如何快速跑出我们需要的描述性统计数据表和对应基础编程语法。 ? 正式开始数据处理,我们首先要思考的不是当前该怎么操作,而是报告撰写需要哪些数据,然后反推数据表应该长什么样子,再决定处理环节做哪些准备。 在 SPSS 实际处理的环节,又分为以下两步: 一、数据准备环节,包括:(英文对应编程命令标题)
(编辑:开发网_开封站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |