深度学习已成功应用于这三大领域
最早的机器翻译神经网络探索中已经纳入了编码器和解码器的想法(Allen 1987; Chris-man 1991; Forcada and ~Neco 1997),而翻译中神经网络的第一个大规模有竞争力的用途是通过神经语言模型升级翻译系统的语言模型(Schwenk et al., 2006; Schwenk, 2010)。之前,大多数机器翻译系统在该组件使用n-gram 模型。机器翻译中基于n-gram 的模型不仅包括传统的回退n-gram 模型(Jelinek and Mercer, 1980; Katz, 1987; Chen and Goodman, 1999),而且包括最大熵语言模型(maximum entropy language models)(Berger et al., 1996),其中给定上下文中常见的词,a±ne-softmax 层预测下一个词。 关联阅读: 大数据或成新经济增长点 共享开放藩篱待破 中国将会很快成为全球人工智能技术的中心 (编辑:开发网_开封站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |