加入收藏 | 设为首页 | 会员中心 | 我要投稿 开发网_开封站长网 (http://www.0378zz.com/)- 科技、AI行业应用、媒体智能、低代码、办公协同!
当前位置: 首页 > 服务器 > 安全 > 正文

让人工智能为网络防御服务

发布时间:2022-06-22 13:34:16 所属栏目:安全 来源:互联网
导读:网络防御能力正在努力跟上更先进的网络进攻能力的发展步伐。人工智能特别是尖 端 的 机 器 学 习(Machine Learning,ML) 方法已被用来减轻网络防御者的负担。对网络防御者而言,机器学习是一项优势还是问题,将取决于自动化的网络防御系统能否应对愈演愈烈的
  网络防御能力正在努力跟上更先进的网络进攻能力的发展步伐。人工智能——特别是尖 端 的 机 器 学 习(Machine Learning,ML) 方法——已被用来减轻网络防御者的负担。对网络防御者而言,机器学习是一项优势还是问题,将取决于自动化的网络防御系统能否应对愈演愈烈的各类能力。正如美国人工智能国家安全委员会(National Security Commission on Artificial Intelligence,NSCAI)警告称,“在不使用人工智能的情况下,对抗以机器速度运行,并且具有人工智能能力的对手将是一场灾难”。
 
 
  1.通过机器学习为网络防御创造公平的对抗环境
  机器学习型系统能在大量的数据中发现模式,这些模式对于在不确定的情况下进行预测非常有用。在从图像分类到复杂策略博弈的任务中,它们可以达到或超过人类的能力,应用到网络安全方面就能形成检测能力,从而大大提高攻击者的门槛。例如,入侵检测系统可以利用大量网络活动数据来定义正常行为的基线,以帮助网络防御者更快、更准确地发现异常。攻击者不仅需要避免明显的危险信号,还需要在更细微的层面上维持活动的合法表象。恶意软件的检测同样也受益于“能够通过大量数据集来发现更广泛的模式,从而区分恶意代码和良性代码”的系统。网络安全服务通常使用机器学习来帮助分析恶意软件,例如,识别类似的恶意样本集,并将其与已知的恶意软件进行匹配。传统的防病毒系统很难跟上攻击者更新代码的速度,而在理想情况下,启用机器学习型系统将能通过识别更深层次的模式(这些模式具有恶意代码的特征)来检测未被发现的恶意软件。
 
  机器学习不仅具有自动检测的潜力,还具有主动防御攻击的潜力。从理论上讲,机器学习可以通过动态调整来干扰或减轻攻击。被称为“蜜罐”的诱饵数据或诱饵网络早即有之,但机器学习可以使它们适应持续不断的攻击,更有效地引诱攻击者,使他们暴露自己的能力。研究人员正在试验一种系统,可以动态地对网络进行自动重新配置,以阻止攻击者的操作。
 
  2.机器学习型网络防御面临的问题
  即使是最复杂的机器学习型系统,也常常容易受到欺骗。攻击者可以通过将恶意软件伪装成正常软件来规避基于机器学习的恶意软件分析,或者通过模仿正常的用户行为来欺骗入侵检测系统。因此,基于机器学习型防御必须具有抵抗能力,这意味着它们在面对这种欺骗时仍能可靠地执行,与此同时,机器学习应用于网络防御也会面临诸多问题。
 
  2.1 机器学习中的漏洞
  机器学习型系统会在数据中寻找对预测有用的模式或统计规律。为了最大限度地提高其预测的准确性,系统将寻找任何有用的模式,不管它们是否会导致错误。例如,一种图像分类器可根据图像中是否有雪来学习如何区分狼和哈士奇。准确分类训练数据集的最有效方法就是在数据集中纳入许多有雪的狼图像和没有雪的哈士奇图像。但是,当遇到更具代表性的训练集或蓄意欺骗时,这种关联性可能会导致系统出错。攻击者可以发现此漏洞,从而创建一个欺骗性输入项,例如,在哈士奇图像中添加像雪一样的图像以混淆识别。在机器学习的研究中充满了这样的“对抗性样例”,研究人员为了改变模型的预测结果而创建欺骗性输入项。越来越多的文献证明这类攻击蔓延到了垃圾邮件过滤器、恶意软件及入侵检测系统等一系列网络安全应用程序。
 
  机器学习型系统易受到写入代码中的错误、软件漏洞等欺骗。更准确地说,机器学习型系统依赖于识别关联性,而不是理解因果关系,但在数据中常常充斥着虚假关联(例如“雪”和“狼”之间的关联),这些关联虽然源于有用的经验法则,但并不总是准确的。事实上,一些研究人员将对抗性示例描述为机器学习的“特性而非漏洞”,因为它们证明了系统已经学会了一种可供预测的模式。即使被攻击者利用的图像可以欺骗机器学习型系统,系统也在做它应该做的事情——根据关联进行预测。
 
  由于某种程度上,基于识别关联性进行预测是机器学习型系统的固有特性,因此,当前还未研究出容易的方法来防止这些漏洞的出现。在实践中,很难看出机器学习型系统何时学会了虚假关联(例如“雪”和“狼”之间的关联),但可能欺骗系统的输入项组合数不胜数,因此也不可能通过测试每一组合来找出漏洞。这些挑战促使人们寻找可靠的方法来抵御“对抗性样例”,但收效甚微。
 
  2.2 准确性与稳固性之间的取舍
  研究人员找到了各种方法来清除虚假关联,从而产生一个更能抵御攻击的模型。然而,这样做是以牺牲模型的总体准确性为代价的。这似乎是因为前述特性有助于在不确定的情况下进行预测。对于机器学习型系统来说,像区分狼和哈士奇这样的任务是艰巨的。开发者可以专门制作数据让训练系统不要依赖雪作为指标,但如果没有这个指标,系统就很难识别狼和哈士奇。换句话说,这个系统可能不太容易受到欺骗,但在执行主要任务时其效率也较低。
 
 
  最大限度地提高防病毒系统的准确性可能会提高其总体检出率,同时又难免使其更容易受到欺骗性攻击(例如试图将恶意软件伪装成合法文件的攻击)。研究人员成功演示了对高度准确、部署了机器学习功能的防病毒系统进行攻击,同时对该防病毒系统进行了逆向工程研究,结果发现该模型已经学会了将某些字符序列与良性文件牢牢关联到一起的强烈关联。他们只需将这些序列附加到恶意文件中,就可以欺骗系统将其归类为良性文件。为消除此类盲点而精心设计的系统可能不易受到此类欺骗,但通常也更容易发生漏报(系统未检出某一恶意软件)或误报(系统将良性文件错误标记为恶意文件)。

(编辑:开发网_开封站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读