谷歌研究人员利用深度强化学习来优化芯片设计
在最近发表在《arXiv上》的一篇题为 "通过深度强化学习进行芯片布局(Chip Placement with Deep Reinforcement Learning) "的论文中,谷歌的团队将芯片布局问题定位为强化学习(RL)问题。然后,训练好的模型将芯片block(每个芯片block都是一个独立的模块,如内存子系统、计算单元或控制逻辑系统)放置到芯片画布上。
深度强化学习模型的输入是芯片网表、当前要放置节点的ID和一些网表元数据。网表图和当前节点通过一个基于边缘的图神经网络来生成部分放置的图和候选节点的嵌入。 然后,前馈神经网络将其作为一个聚合输入,输出一个学习到的表示方法,该方法可以捕捉有用的特征,并帮助在所有可能的网格单元中生成一个概率分布,通过策略网络可以将当前节点放置在该节点上。整个过程可以用下面的GIF来封装。左边的芯片显示了从头进行的宏放置,右边的芯片则是对一些初始放置进行微调。 通过这种设置,研究人员展示了效率和放置质量的提高,并表示对于一个人类专家需要数周时间的过程,用他们训练有素的ML模型在6个小时内完成。
展望未来,该团队认为,其模型展示了一种强大的自动芯片布局方法,可以大大加快芯片设计的速度,这也是针对任何芯片布局问题,这将使芯片设计过程的早期阶段也能实现协同优化。 本文素材来自互联网 (编辑:开发网_开封站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |