-
数据分析常见的误区有哪几种
所属栏目:[大数据] 日期:2022-06-25 热度:61
数据分析常见的误区有哪些? 1、盲目的收集数据 一个正常运营的产品每天会产生大量的数据,如果把这些数据都收集起来进行分析,不仅会使工作量增加,浪费大量时间,很可能还会得不到想要的分析结果。作为一名数据分析人员,更不应该为了分析而分析,而是应[详细]
-
如何管理高度可扩大系统中的元数据
所属栏目:[大数据] 日期:2022-06-25 热度:91
元数据过去对数据中心架构的影响很[详细]
-
做数据治理前 应该明白并避开的几大坑
所属栏目:[大数据] 日期:2022-06-25 热度:116
Gartner 的一项调查显示,超过90%的数据治理项目都以失败告终。 这个数据可能会劝退一大波正准备做或者正在观望数据治理的企业:既然这笔投资90% 的概率失败,那为什么要继续。 1. 目标不明晰 数据治理是一个复杂的系统工程,一个明确合理的目标,能让数据[详细]
-
大数据平台核心架构图鉴 提议收藏
所属栏目:[大数据] 日期:2022-06-25 热度:115
大数据的核心层应该是:数据采集层、数据存储与分析层、数据共享层、数据应用层,可能叫法有所不同,本质上的角色都大同小异。 所以我下面就按这张架构图上的线索,慢慢来剖析一下,大数据的核心技术都包括什么。 01数据采集 数据采集的任务就是把数据从各[详细]
-
新时代开源数据调度在1000+企业的进化之途
所属栏目:[大数据] 日期:2022-06-25 热度:110
近年来,随着互联网的飞速发展,业务量在短时间内呈现爆发式增长,对应的数据量快速从数百 G 涨至数百 T。无论数据存储还是数据调度,当前数据量已经远超处理能力的上限。若信息处理技术仍渐进式发展,数据处理能力的提升将远落后于指数级增长的数据量。[详细]
-
如何使云原生运维化繁为简
所属栏目:[大数据] 日期:2022-06-14 热度:70
云计算带来了集约化、效率、弹性与业务敏捷的同时,对云上运维提出了前所未有的挑战。如何面对新技术趋势的挑战,构建面向云时代的智能监测平台,让云上应用获得更好的保障,是如今摆在每一个企业面前的一道难题。 在日前的【TTalk】系列活动第八期中,51C[详细]
-
如何借助Python创建机器学习模型
所属栏目:[大数据] 日期:2022-06-14 热度:60
你是否会遇到这样的场景,当你训练了一个新模型,有时你不想费心编写 Flask Code(Python的web 框架)或者将模型容器化并在 Docker 中运行它,就想通过 API 立即使用这个模型? 如果你有这个需求,你肯定想了解MLServer。它是一个基于Python的推理服务器,[详细]
-
转向未来的AI自动化测试工具
所属栏目:[大数据] 日期:2022-06-14 热度:79
近年来,自动化测试已经发生了重大的迭代。它在很大程度上协助QA团队减少了人为错误的可能。虽然目前有许多工具可以被用于自动化测试,但合适的工具一直是自动化测试成败与否的关键。同时,随着人工智能、机器学习和神经网络在各个领域的广泛运用,面向人[详细]
-
微型机器学习有望让深度学习嵌入微处理器
所属栏目:[大数据] 日期:2022-06-14 热度:94
深度学习模型最初的成功归功于拥有大量内存和GPU集群的大型服务器。深度学习的前景催生了一个为深度神经网络提供云计算服务的行业。因此,在几乎无限的云资源上运行的大型神经网络变得非常流行,这对于具有充足预算的科技公司尤其如此。 但与此同时,近年[详细]
-
人工智能平台计划中的质量工程设计
所属栏目:[大数据] 日期:2022-06-14 热度:95
我们正处在人工智能的黄金时代。人工智能方案的采用使得企业更具创造性、竞争力和快速响应能力。软件即服务(software-as-a-service,SaaS)模式,加上云技术的进步,使软件生产和消费过程越来越成熟。 普遍存在的一个事实是,大多数组织更喜欢购买现成的[详细]
-
开启元宇宙的数字人之行
所属栏目:[大数据] 日期:2022-06-14 热度:185
作为构建元宇宙内容的基石,数字人是最早可落地且可持续发展的元宇宙细分成熟场景,目前,虚拟偶像、电商带货、电视主持、虚拟主播等商业应用已被大众认可。在元宇宙世界中,最核心的内容之一非数字人莫属,因为数字人不光是真实世界人类在元宇宙中的化身[详细]
-
使用机器学习重塑视频中的人脸
所属栏目:[大数据] 日期:2022-06-14 热度:98
来自于中、英两国的一项合作研究设计出了一种在视频中重塑面孔的新方法。该技术可以扩大和缩小面部结构,同时还具有高度一致性,并且没有人工修剪的痕迹 一般而言,这种面部结构的转化通过传统的 CGI 方法来实现,而传统的 CGI 方法依托详细且昂贵的运动封[详细]
-
由于智能数据库的自助式机器学习
所属栏目:[大数据] 日期:2022-06-14 热度:187
由于智能数据库的自助式机器学习 1.如何成为一个IDO? IDO(insight-driven organization)指洞察力驱动(以信息为导向)的组织。要成为一个IDO,首先需要数据以及操作和分析数据的工具;其次是具有适当经验的数据分析师或数据科学家;最后还需要找到一种技术或者[详细]
-
元宇宙在艺术领域的探索
所属栏目:[大数据] 日期:2022-06-14 热度:55
在元宇宙概念火爆的当下,各行业均开始了在这片富地中的探索。而在诸多行业之中,艺术行业与元宇宙的融合互促效果尤为明显。在不久前MetaCon元宇宙技术大会上,触角科技有限公司联合创始人、大有不言文化有限公司创始人谷强为我们带来了《元宇宙在艺术行业[详细]
-
美团图神经网络训练架构的实践和探索
所属栏目:[大数据] 日期:2022-06-14 热度:186
美团搜索与NLP团队在图神经网络的长期落地实践中,基于业务实际场景,自主设计研发了图神经网络框架Tulong,以及配套的图学习平台,提升了模型的规模和迭代效率。 1. 前言 万物之间皆有联系。图作为一种通用的数据结构,可以很好地描述实体与实体之间的关[详细]
-
几时使用机器学习
所属栏目:[大数据] 日期:2022-06-13 热度:61
为什么要探讨这个话题 探讨这个话题的本质原因是来源于为客户提供数据战略咨询服务时的思考,很多客户的痛点与诉求看似可以用机器学习解决,但实际上却充满风险,所以究竟机器学习什么时候该用,什么时候不该用,便成为了思考的对象。 机器学习起源于学术[详细]
-
如何让程序员更简单使用机器学习
所属栏目:[大数据] 日期:2022-06-13 热度:65
一直以来,人们试图手工编写算法来理解人工生成的内容,但是成功率极低。例如,计算机很难掌握图像的语义内容。对于这类问题,AI科学家已经尝试通过分析汽车、猫、外套等低级像素来解决,但结果并不理想。尽管颜色直方图和特征检测器在一定程度上发挥了作[详细]
-
如何建造一支高效率的人工智能团队?
所属栏目:[大数据] 日期:2022-06-12 热度:185
本文将介绍把机器学习基础设施、员工和流程融合的方式,以实现适用于企业的MLOps(面向人工智能系统的运维管理)。本文希望对旨在以高效人工智能团队开发强大的人工智能/机器学习(AI/ML)项目的经理和主管提供启发。 本文的经验来自Provectus公司的人工智能团[详细]
-
从开始懂互联网到懂用户,谷歌这次都押了哪些宝?
所属栏目:[大数据] 日期:2022-06-12 热度:167
谷歌 I/O 大会如约而至。谷歌 I/O 2022 大会开幕式上,谷歌 CEO Sundar Pichai 发表了长达 2 小时的以知识和计算为关键词的主题演讲。这次演讲在勾勒谷歌长期发展愿景的同时,也在某种程度上描绘后疫情时代的互联网技术的演进方向。 搜索再定义:Anyway、A[详细]
-
线下零售要怎么构建AI自动结账服务?
所属栏目:[大数据] 日期:2022-06-12 热度:88
客户体验是线上零售的重要优势,无需排队、没有延迟、采购便捷。但根据Forrester研究报告,由于人们希望在购买前充分了解产品,或只是不喜欢等待商品运输的过程,美国72%的零售消费仍然依靠实体店面。 目前,无人售货的创意方案在亚马逊无人便利店(Amazon[详细]
-
赋能元宇宙 启动智能交互新未来
所属栏目:[大数据] 日期:2022-06-12 热度:184
MetaCon元宇宙技术大会2022在线上成功举办,大会聚焦元宇宙产业政策、学术研究成果、技术创新和行业落地等多个层面。人机交互与高效能网络落地专场特邀了多名技术大咖,针对如何实现元宇宙世界人机交互,VR/AR/MR虚拟现实技术、全息影像技术、传感技术等常[详细]
-
互联网 VS 传统行业,数据分析有啥异同
所属栏目:[大数据] 日期:2022-06-12 热度:133
很多同学好奇:总说互联网数据分析,到底啥是互联网数据分析?和传统企业有啥区别?今天系统讲解下。 典型的传统企业 典型的传统企业,以制造业为代表的,商业模式是: 进原料,生产成产品 通过经销商,卖到全国 承担产品的售后、服务工作 因此,其部门划分[详细]
-
一文看懂渠道分析怎样做
所属栏目:[大数据] 日期:2022-06-12 热度:66
今天跟大家分享的是:推广渠道分析。推广渠道是推广产品、获取客户的途径,对企业而言,是影响收入的重要因素。今天就简单分享一下,该如何进行分析。 一、有哪些推广渠道 凡是能打广告,拉来用户的地方,都是推广渠道。 常见的线上推广渠道,如: 广告:[详细]
-
五种比较常用格式的数据输出,手把手教你用Pandas实现
所属栏目:[大数据] 日期:2022-06-12 热度:93
五种比较常用格式的数据输出,手把手教你用Pandas实现 01 CSV DataFrame.to_csv方法可以将DataFrame导出为CSV格式的文件,需要传入一个CSV文件名。 复制 df.to_csv(done.csv) df.to_csv(data/done.csv) # 可以指定文件目录路径 df.to_csv(done.csv, index=[详细]
-
大数据算法天花乱坠的时代,如何辨别数据陷阱?
所属栏目:[大数据] 日期:2022-06-12 热度:72
过去的一周,你心情咋样? 除了股票基金过山车般的涨跌之外,工作例会上,你使用的数据PPT模板让展示更加美观有趣,获得老板好评。 一把游戏结束,系统自动送上战力统计,你的队友明显拖了后腿,下次不要和ta组队了。 此时手机又提醒你视屏时间过长,建议休[详细]